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Plates stiffened with ribs can be modeled as equivalent homogeneous isotropic or orthotropic

plates. Modeling such an equivalent smeared plate numerically, say, with the finite element method

requires far less computer resources than modeling the complete stiffened plate. This may be im-

portant when a number of stiffened plates are combined in a complicated assembly composed of

many plate panels. However, whereas the equivalent smeared plate technique is well established

and recently improved for flat panels, there is no similar established technique for doubly curved

stiffened shells. In this paper the improved smeared plate technique is combined with the equation

of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing

technique for stiffened shell structures. The developed prediction technique is validated by compar-

ing natural frequencies and mode shapes as well as forced responses from simulations based on the

smeared theory with results from experiments with a doubly curved cross-stiffened shell. Moreover,

natural frequencies of cross-stiffened panels determined by finite element simulations that include

the exact cross-sectional geometries of panels with cross-stiffeners are compared with predictions

based on the smeared theory for a range of different panel curvatures. Good agreement is found.

VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3523305]
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I. INTRODUCTION

Stiffeners are efficient for enhancing the stiffness of a

plate or shell structure without adding unnecessary amounts

of mass as a simple increase of plate thickness would do.

However, the increased complexity of plates with added

stiffeners normally requires much longer computing time for

finding the structural acoustic properties of a stiffened struc-

ture in a design process. To reduce the computational effort,

a coarse but efficient method is to smear the stiffeners to the

base plate or shell. This technique of smeared stiffened

plates with an effective torsional rigidity was developed by

Lampert in the 1970s1 and summarized by Szilard in 2004.2

The accuracy of this technique for flat plates has recently

been improved.3 However, there is no similar established

theory for doubly curved stiffened shells, and this is the sub-

ject of the present paper.

In the last 40 years researchers have paid a great deal of

attention to the dynamic behavior of stiffened shells. Works

have been done on cylindrical shells4–29 and on conical

shells.30,31 Since doubly curved shells need more degrees of

freedom for analysis researchers mostly use the finite ele-

ment method (FEM) to deal with such cases. The application

of FEM to the vibration analysis of a stiffened shell makes it

possible to model discrete stiffeners, variable curvature, and

irregular geometry. However, FEM calculations based on

the detailed geometries of such panels have been found to be

very time-consuming.

Nowadays, engineers usually draw a new design struc-

ture with a three-dimensional program and later simulate its

dynamic properties with an FEM program. The drawing pro-

cess and the FEM calculations may take days or even weeks

for a relatively simple structure. Furthermore, it is often nec-

essary to make modifications to the structure and for that

new FEM calculations are required. All this can be very

time-consuming. Even though computers become more and

more powerful, the engineer’s working hours for making a

drawing and developing an FEM model have almost not

changed. Thus, it is very useful if the geometry can be sim-

plified, for example, by the smearing technique.

The purpose of this paper is to present a smearing tech-

nique for determining the natural frequencies and mode

shapes of a simply supported doubly curved thin rectangular

shell with periodically arranged small stiffeners. The smear-

ing technique becomes unreliable at high frequencies, where

half of the bending wavelength in the base plate becomes

comparable to—or smaller than—the stiffener spacing. How-

ever, the proposed technique is useful for making a fast esti-

mate, although its application is limited to the lower number

of vibrational modes.

The expressions to be derived in the following for stiff-

ened shells are based fundamentally on smeared properties of
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equivalent flat plates with stiffeners. Such properties of

flat stiffened plates are therefore summarized in Sec. II.

These results are then utilized, in Sec. III, for developing the

smearing technique for curved cross-stiffened panels. In

Sec. IV predictions using the developed smearing technique

are validated experimentally for a weakly doubly curved

and cross-stiffened panel. It is demonstrated that good agree-

ment is achieved between predicted and measured values

of natural frequencies and mode shapes as well as forced

responses in terms of point and transfer mobilities. With the

smearing technique experimentally validated for the test

panel, this technique is then used for predicting the modal

properties of cross-stiffened panels for a range of different

curvatures. These predicted results are compared with

finite element (FE) calculations (using ANSYS) in which all

stiffener details are modeled; these time-extensive FE calcu-

lations are used as reference for evaluating the predicted

results.

II. SMEARED STIFFENED PLATE

It has long been recognized that the lower modes of

vibration of stiffened plates may be estimated by “smearing”

the mass and stiffening effects of the stiffeners over the sur-

face of the plate. The results in this section are based on

existing theory.2,3

In the following, the natural frequencies of a thin rectan-

gular plate with cross-stiffeners are determined. The plate is

simply supported along all four edges. The geometrical pa-

rameters of the plate are shown in Fig. 1; the length of the

plate is a in the x direction and b in the y direction, and its

thickness is h. The stiffeners in the x direction have the width

wsx, height hsx, and spacing bs and in the y direction the cor-

responding values are wsy, hsy, and as.

The governing equation of motion for an equivalent

smeared plate of the stiffened plate has been derived

by Szilard;2 for the transverse displacement w(x, y, t) this

yields

Dx

@4wðx; y; tÞ

@x4
þ 2H

@4wðx; y; tÞ

@x2@y2
þ Dy

@4wðx; y; tÞ

@y4

þ qhe
@2wðx; y; tÞ

@t2
¼ p; (1)

where Dx and Dy are the equivalent bending stiffness per unit

width in the x and y directions, H is the effective torsional

rigidity, q is the mass density of the material, he is the thick-

ness of the equivalent smeared plate, and p is the external

forcing. The development of the improved Dx and Dy can be

found in Ref. 3, but for ease of reference some details are

also given in the Appendix. With the stiffeners smeared and

spread on top of the plate, the thickness of the equivalent

smeared plate becomes

he ¼ hþ hsws

1

as
þ

1

bs

� �

�
hsw

2
s

asbs
: (2)

For a thin cross-stiffened rectangular plate with all

edges simply supported, the natural frequencies of the corre-

sponding smeared plate are32

fmn;flat;stiff ¼
1

2p

ffiffiffiffiffi

1

q00

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx

mp

a

� �4

þ 2H
mp

a

� �2 np

b

� �2

þ Dy

np

b

� �4

;

r

(3)

where q00 ¼ qhe is the smeared average mass per unit area,

and the integers m and n are the mode numbers correspond-

ing to the x and y directions.

III. SMEARED STIFFENED SHELL

In this section, an equation for the natural frequencies of a

simply supported doubly curved and cross-stiffened rectangu-

lar shell is presented together with an expression for the forced

response. First, the unstiffened rectangular shell is considered.

A. Natural frequencies of a doubly curved thin
rectangular shell

Soedel studied a simply supported doubly curved rectan-

gular shell.33 Here, the shell has a constant radius of curva-

ture Rx in the x direction, and a constant radius of curvature

Ry in the y direction. The x–y coordinate system is selected

on the imagined flat base plate. The curved edge lengths of

the shell are a in the x–z plane, and b in the y–z plane, and the

thickness of the shell is h. In what follows E is the Young’s

modulus, v is the Poisson’s ratio, and q is the density.

Assumptions such as Donell–Mushtari–Vlasor’s simpli-

fication and the infinitesimal distance assumption are used inFIG. 1. Geometrical parameters of a cross-stiffened flat rectangular plate.
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Soedel’s derivation. The first basic assumption of Donell–

Mushtari–Vlasor’s simplification is that contributions of

in-plane deflections can be neglected in the bending strain

expressions but not in the membrane strain expressions. The

second assumption is that the influence of inertia in the in-

plane direction can be neglected. Third, the infinitesimal dis-

tance assumption is

ðdsÞ2 ffi ðdxÞ2 þ ðdyÞ2; (4)

where ds is the magnitude of the differential change.33 Both

assumptions introduce a considerable error in the estimation

of the fundamental natural frequency.11

With these assumptions, the equation of motion for free

transverse vibration w(x, y, t) ¼ U3e
iwt of a homogenous shell

becomes33

Dr8U3 þ Ehr4
kU3 � q00x2r4U3 ¼ 0; (5)

where

D ¼
Eh3

12ð1� v2Þ
; (6)

r2ð�Þ ¼
@2ð�Þ

@x2
þ
@2ð�Þ

@y2
; (7)

r2
kð�Þ ¼

1

Rx

@2ð�Þ

@x2
þ

1

Ry

@2ð�Þ

@y2
; (8)

in which q00 ¼ qh is the mass per unit area, and D is the

bending stiffness. For the doubly curved, simply supported

rectangular shell, the transverse displacement is expressed

by a double sine series with terms of the form

U3;mn ¼ Amn sin
mpx

a
sin

npy

b
: (9)

Substituting Eq. (9) into Eq. (5) gives

D
mp

a

� �2

þ
np

b

� �2
� �4

þ Eh
1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

� q00x2 mp

a

� �2

þ
np

b

� �2
� �2

¼ 0: (10)

The natural frequencies are therefore

f 2mn;curve ¼
1

4p2
mp

a

� �2

þ
np

b

� �2
� �2

D

q00

þ

1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

4p2
mp

a

� �2

þ
np

b

� �2
� �2

�
E

q
: (11)

It is well known that the natural frequencies of a thin rectan-

gular flat plate are

fmn;flat ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mp

a

� �2

þ
np

b

� �2
� �2

D

q00

s

) f 2mn;flat ¼
1

4p2
mp

a

� �2

þ
np

b

� �2
� �2

D

q00
; (12)

where the geometrical and material parameters of the flat

plate are the same as those of the curved shell except for the

curvatures. Therefore, Eq. (11) can be rewritten,

f 2mn;curve ¼ f 2mn;flat þ

1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

4p2
mp

a

� �2

þ
np

b

� �2
� �2

�
E

q
: (13)

All in all, the formula for the natural frequencies of a

simply supported, doubly curved, thin rectangular shell can

be seen to be the sum of two terms. The first term relates to a

flat plate that has the same geometrical and material parame-

ters as the curved shell except for the curvatures; the second

term is accounting for the curvature. In other words, in parts

a doubly curved rectangular shell has properties similar to a

flat rectangular plate for which the shell is pressed and

extended into a flat surface. The thickness does not change

during this process. The edge lengths of the flat plate are

equal to the curved edge lengths of the shell, which are still a

and b. Thus, the natural frequencies of the doubly curved

shell can be obtained by finding the natural frequencies of the

related flat plate and adding the curvature term; see Eq. (13).

B. Natural frequencies of a simply supported, doubly
curved, and cross-stiffened thin rectangular shell

This section presents the natural frequencies of a simply

supported, doubly curved, and cross-stiffened thin rectangu-

lar shell. Both a physical explanation and an analytical deri-

vation are offered.

Equation (13) indicates a possible way of finding the natu-

ral frequencies even for a doubly curved cross-stiffened shell. If

these stiffeners are smeared on the surface of the shell, the

resulting structure can be regarded as an equivalent smeared

shell. The smeared shell also has its related plate, which is the

shell pressed and extended into a flat surface. The related

smeared plate has its equivalent bending stiffness in the x and y

direction, Dx and Dy, torsional rigidity, H, and equivalent thick-

ness, he. None of these parameters appears in the curvature term

in Eq. (13), which means that this term is independent of the

smearing technique. The two terms in Eq. (13) can thus be

obtained individually. Equation (3) yields the natural frequen-

cies of the related plate, whereas the curvature term of Eq. (13)

can be obtained from the base shell properties. Following these

arguments this results in the natural frequencies of a simply sup-

ported, doubly curved, and cross-stiffened thin rectangular shell

f 2mn;curve;stiff ¼ f 2mn;flat;stiff

þ

1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

4p2
mp

a

� �2

þ
np

b

� �2
� �2

�
E

q
: (14)
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An analytical derivation of Eq. (14) can be developed

by using the equation of motion for the shell. Equation (5)

can represent an equation of motion for a stiffened shell, pro-

vided that the parameters D, h, and q00 ¼ qh are replaced by

the corresponding properties of an equivalent smeared shell,

that is, by De, he, and q00 ¼ qhe. The equation of motion of

the equivalent smeared shell therefore becomes

Der
8U3 þ Eher

4
kU3 � q00x2r4U3 ¼ 0; (15)

As can be seen from Eq. (6), the bending stiffness D of a

shell is independent of the curvature. Therefore D can be

obtained from a structure where the radii of the shell go to

infinity, in other words, a corresponding flat plate. Similarly,

the equivalent bending stiffness De can also be calculated for

an equivalent smeared flat plate, which is the smeared shell

pressed and extended into a flat surface.

It was shown in Sec. II that the equivalent smeared plate

has its equivalent bending stiffnesses Dx and Dy and tor-

sional rigidity H. In order to use Eq. (15), Dx, Dy, and H

should be combined into one parameter, De. The challenge

now is to find an expression for De, which should include the

orthotropic behavior of the equivalent smeared plate.

It can be assumed that an equivalent “isotropic” plate,

which has the same geometrical properties of the previous

equivalent smeared plate, exists. Also, the “isotropic” plate

has an equivalent bending stiffness, De, and its mechanical

properties are the same as those of the mentioned equiva-

lent smeared plate. The equation of motion of an isotropic

plate is33

D
@4wðx; y; tÞ

@x4
þ 2

@4wðx; y; tÞ

@x2@y2
þ
@4wðx; y; tÞ

@y4

� �

þ qh
@2wðx; y; tÞ

@t2
¼ p: (16)

By replacing D with De and h with he, one can use Eq. (16)

as the equation of motion for the equivalent “isotropic”

plate. With the simply supported boundary condition, the

natural frequencies of this plate can now be obtained,

fmn;iso ¼
1

2p

mp

a

� �2

þ
np

b

� �2
� �

ffiffiffiffiffiffiffi

De

qhe

s

: (17)

Since the “isotropic” plate has the same mechanical proper-

ties as the equivalent smeared plate, their natural frequencies

should also be identical. They are

fmn;iso ¼ fmn;flat;stiff : (18)

Substituting Eqs. (3) and (17) into Eq. (18) gives an expres-

sion for the bending stiffness of the assumed “isotropic”

equivalent plate,

De ¼
Dx

mp

a

� �4

þ 2H
mp

a

� �2 np

b

� �2

þ Dy

np

b

� �4

mp

a

� �2

þ
np

b

� �2
� � : (19)

This yields the wanted bending stiffness. Now, by substitut-

ing Eq. (19) into Eq. (15), one can obtain the natural

frequencies of the simply supported, doubly curved, and

cross-stiffened thin rectangular shell,

f 2mn;curve;stiff ¼
1

4p2
1

q00

¼ Dx

mp

a

� �4

þ 2H
mp

a

� �2 np

b

� �2

þDy

np

b

� �4
� �

þ

1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

4p2
mp

a

� �2

þ
np

b

� �2
� �2

�
E

q
: (20)

Note that the first term equals f 2mn;flat;stiff in Eq. (3). It can

therefore be seen that Eq. (20) is identical with Eq. (14).

C. Forced vibration of a simply supported, doubly
curved, and cross-stiffened thin rectangular shell

The smearing technique can also be used for evaluation

of forced vibration of a simply supported, doubly curved,

and cross-stiffened thin rectangular shell. If a pressure

p ¼ p(x, y) is applied on the panel in its normal direction, it

can be inserted in Eq. (15), and with Eq. (19) also substi-

tuted, the equation of motion becomes

Der
8U3 þ Eher

4
kU3 � q00x2r4U3 ¼ r4p; (21)

where the pressure can be expressed by a double sine series

with terms of the form

pmn ¼ Pmn sin
mpx

a
sin

npy

b
: (22)

By substituting Eqs. (9) and (22) into Eq. (21), the total displace-

ment at position (x, y) can be found after some algebra to be

U3ðx; yÞ ¼
X

1

m¼0

X

1

n¼0

Amn sin
mpx

a
sin

npy

b
; (23)

where

Amn ¼ Pmn

mp

a

� �2

þ
np

b

� �2
� �2

De

mp

a

� �2

þ
np

b

� �2
� �4

þ Ehe
1

Rx

mp

a

� �2

þ
1

Ry

np

b

� �2
� �2

� qhex
2 mp

a

� �2

þ
np

b

� �2
� �2

: (24)
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For point force excitation of amplitude F0 at panel position

(x0, y0) it follows that Pmn ¼ F0d(x � x0) � d(y � y0), where d

is the Dirac delta function. The transfer mobility Y(x, y;

x0, y0) that relates the transverse velocity response at location

(x, y) to a point force at (x0, y0) can therefore be determined

from

Yðx; y; x0; y0Þ ¼
ixU3ðx; yÞ

F0

: (25)

The point (or direct) mobility is obtained simply by replac-

ing the response location (x, y) by (x0, y0) in Eq. (25).

IV. COMPARISON OF RESULTS

A. Experiments with a curved stiffened panel

A physical model has been used to test the equation

obtained by the presented smearing technique. The model is a

doubly curved cross-stiffened thin rectangular shell, which is

fabricated (milled out) from a solid block of polyvinyl chlo-

ride (PVC). The experimental arrangement is shown in Fig. 2,

where it is seen that the solid edge block of the machined

panel is screwed into a thick-walled hard-wood box, which is

bolted to a 300 kg steel stand. The simply supported boundary

condition of the panel was attempted accomplished by a

machined narrow groove around the panel perimeter, see

Fig. 2. This means that the panel was supported by a thin nar-

row strip that is connected to an almost rigid supporting edge.

The material properties are E ¼ 3 � l09 N/m2, v ¼ 0.33, and

q ¼ 1360 kg/m3. The dimensions of the shell are a ¼ 344

mm, b ¼ 258 mm, h ¼ 6 mm, Rx ¼ 2 m, and Ry ¼ 1.5 m. The

pattern of the cross-stiffening is chosen to be spatially peri-

odic, such that as ¼ 86 mm and bs ¼ 86 mm. With half end-

spacing it follows that there are three stiffeners in the x

direction and four stiffeners in the y direction. Stiffeners in

both the x and y directions had the same height, hsx ¼ hsy
¼ 10 mm, and same width, wsx ¼ wsy ¼ 6 mm.

The curved cross-stiffened panel was driven via a

stringer at a stiffener by an electrodynamic exciter of type

Brüel & Kjær (B&K, Nærum, Denmark) 4810; the coordi-

nates of the drive point were (x0, y0) ¼ (0.213, 0.076), where

the origin of the coordinate system is at the lower left-hand

corner of the curved panel in Fig. 2. The input force was

measured with a force transducer of type B&K 8200, and the

response velocities were measured with a laser vibrometer of

type Polytec (Waldbronn, Germany) PDV-100 at 192 points

evenly spread over the panel. The force and velocity signals

were fed to charge amplifiers of type B&K Nexus 2692, and

the frequency response functions between velocities and ex-

citation force were measured using a B&K “PULSE” Ana-

lyzer 3560 with a frequency resolution of 0.25 Hz.

The natural frequencies and mode shapes of the panel

were obtained from the measured mobilities. In Table I the

natural frequencies predicted by Eq. (20) are compared with

the experimentally measured data. The mode numbers are

defined as m in the x direction and n in the y direction. In the

table the deviation of natural frequency denotes the difference

between the predicted analytical natural frequency (fanalytical)

and the experimental data (fEx). Thus, this deviation in per-

centage is calculated as 100�(fanalytical � fEx)=fEx Generally a

very good agreement is found with deviations within 4%,

except for the fundamental natural frequency; this was found

to deviate from the measured value by �7%, but this mode is

left out of the table. The reason for this difficulty in accurately

predicting the fundamental frequency is the assumptions used

in the equation of motion of the shell, Eq. (5); these assump-

tions introduce a considerable error in the estimation of the

fundamental natural frequency.34 Such deviation for the fun-

damental natural frequency can be up to �30% if the panel is

strongly curved as is the case for some of the simulated cases

that will be shown in Sec. IV B. With the chosen dimensions

of the stiffened panel the range of modes (m, n) is limited to

mode (3, 2) for the case considered, because the smearing

method is not expected to work well when the frequency

becomes so high that the spacing between the stiffeners is

comparable to—or larger than—half a flexural wavelength in

the base plate.

The mobilities of the panel are predicted from Eq. (25),

where the numerator is obtained as the product of ix and the

displacement U3, which is given by Eq. (23). The damping

value used in the predictions is taken to be the average value

FIG. 2. Experimental arrangement with a doubly curved cross-stiffened

panel. White dashed lines on the panel face show the positions of the hidden

stiffeners on the rear side.

TABLE I. Predicted and measured natural frequencies for the experimental

panel model. The deviation for each mode is calculated as the difference

between the analytical natural frequency (fanalytical) and the experimental

data (fEx). Thus, the deviations are calculated as 100
�(fanalytical � fEx)=fEx.

m N

Experiment

frequency (Hz)

Analysis

frequency (Hz)

Deviation

(%)

2 1 327 329 0.6

1 2 453 471 4.0

2 2 573 574 0.2

3 3 611 612 0.2

3 2 800 810 1.3
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of the measured damping loss factors of the panel modes,

0.035. Figure 3 shows a comparison of the analytical and the

measured point mobility. The solid curve is the predicted

result using the smearing technique, and the dashed curve is

the experimental result. Overall, a fairly good agreement can

be seen, and the small deviations in mobility magnitude and

phase reflect the deviations that were observed in the natural

frequencies; this is especially the case for the 4% shift in the

natural frequency of mode (1, 2) that results in about 5 dB

deviation in the “mass-slope-region” of the mobility magni-

tude. From Fig. 3, it can also be observed that the weakly

excited mode (3, 1) at 611 Hz is hardly visible in the meas-

ured result. This is because the drive point was relatively

close to a nodal line of this mode; however, from an analysis

of all measured data both its natural frequency and mode

shape could be determined. Moreover, comparisons of pre-

dicted and measured responses at other positions also show a

fairly good agreement with similar small deviations corre-

sponding to those in the point mobility. This is seen in

Fig. 4, which shows three examples of predicted and meas-

ured transfer mobilities for the response positions denoted as

points 1–3 in Fig. 2. These points are located, respectively,

in a plate field, on a stiffener, and at the crossing of two stiff-

eners; the location of stiffeners can be seen from the dashed

lines in Fig. 2 that indicate the positions of the (hidden) stiff-

eners on the rear side of the panel.

An example of an experimentally determined modal pat-

tern is shown in Fig. 5 in the form of a two-dimensional sur-

face plot. The result shown is for mode (2, 1) at 327 Hz, and

this clearly illustrates a modal pattern with two “half-sinus-

oidal” in the x direction and one half-sinusoidal in the y

direction. This and the other mode shapes have been

obtained from the real parts of the transfer mobilities meas-

ured at 192 positions, and the modal data have been normal-

ized by the maximum amplitude value.

Two-dimensional plots are not suitable for comparing

measured and predicted results. All the examined mode

shapes are therefore shown in Fig. 6 by their detailed modal

patterns in the x and y directions, respectively. The mode

shapes predicted by the smearing technique are plotted as

solid lines, whereas the experimentally determined mode

shapes are presented as circles located at the actual measure-

ment points; the dashed line represents the corresponding

un-deformed panel surface-line. Overall the agreement is

seen to be good between the predicted and measured results.

A close inspection, however, reveals that there are small

deviations. First, it is observed from the x-wise modal pat-

tern of mode (2, 1) that there are small displacements at each

end of the panel, and that these are in anti-phase. Similar

observations can be made for modes (3, 1) and (3, 2). This is

apparently caused by small shear deformations (displace-

ments) at the experimental simple support, or by small

motion of the whole experimental arrangement. Additional

tests showed that the vibration level of the “rigid” frame

were lower than the panel vibration by more than 25 dB at

these modes. Thus, the edge-deviation is most likely caused

by shear deformation at the narrow-strip support, which can-

not fully accomplish an ideal simple line support. Second, it

is observed that the measured modal patterns are not exactly

sinusoidal as is the case for the predicted mode shapes; this

applies in particular to mode (2, 2), both in the x and y

FIG. 4. Transfer mobility of the curved stiffened panel. Solid line, analyti-

cal result; dashed line, experimental result. The upper figure is the transfer

mobility at point 1 in a plate field (see Fig. 2); the middle figure is at point 2

on a stiffener; the lower figure is at point 3 at the crossing of two stiffeners.

FIG. 3. Point mobility of the curved stiffened panel. Solid line, analytical

result; dashed line, experimental result.
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directions, and this causes the nodal lines to shift slightly

from the predicted center positions of the zero-crossings. A

possible explanation for this could be boundary vibration

(albeit lower by 30 dB for this mode) of the supporting

“rigid” frame and box structure or manufacturing inaccura-

cies in the curved stiffened panel; this was measured glob-

ally to be of the order of 1.5% for the thickness of the base

panel, and this may have a small influence on the modal

symmetry. The other modes, on the other hand, have mostly

a fine match with the predicted modal patterns.

To sum up, the practically useable frequency range of the

presented smearing technique is limited by the frequency at

which half a bending wavelength in the base plate becomes

comparable to—or smaller than—the stiffener spacing. This

has been validated by the experiments reported herein, which

have demonstrated that the prediction technique is reliable

with an acceptable accuracy up to this frequency; at higher

frequencies the technique may have a small influence on

accurately replicating the actual mode shapes with beginning

local deformation in base panel areas between adjacent stiff-

eners. However, this is outside the frequency range consid-

ered in this study. All in all, the prediction and the

experiments have been found to be in good agreement, despite

the minor experimental difficulties that give rise to small

unpredictable errors.

B. Radius study by numerical simulations

In Sec. IV A a weakly curved cross-stiffened panel was

considered with curvature radii of Rx ¼ 2 and Ry ¼ 1.5 m.

With the smearing technique experimentally validated for

the considered modal range this section examines a new se-

ries of panels that are basically similar to the experimental

structure but with different values of curvature radii Rx. In

this simulation study the panel radius Rx takes values of 2.0,

1.5, 1.0, 0.6, and 0.2 m, whereas the other geometrical pa-

rameters are unchanged. Figure 7 shows the geometry of

four of these models. In the lower part of the figure the panel

is shown rotated so it is easier to see the arrangement of the

stiffeners.

The natural frequencies of this series of curved cross-stiff-

ened panels were computed analytically by the use of the

smearing technique and, as a reference, corresponding detailed

numerical FE analyses were carried out using the software

package ANSYS. The element size used in the FE computations

was set to be 10 mm, and the boundary conditions of the

FIG. 5. Mode shape of mode (2, 1) obtained from experiment.

FIG. 6. Mode shape evaluation. The left-hand

figures show the mode shapes in the x direction,

while the right-hand figures are the mode

shapes in the y direction. The corresponding

mode numbers are shown to the left. Solid lines

represent the theoretically determined mode

shapes; the circles represent the experimentally

determined mode shapes; and the dashed lines

show the neutral positions of the curved base

plate.
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models were again taken to be simply supported along the

four panel edges.

The natural frequencies predicted with the analytical

smearing technique (fanalytical) are compared with the results

computed with the FE model (fFE); the FE model contains all

details of the structure and it is therefore considered to be

the reference for evaluation of the prediction accuracy, as

mentioned above. The deviation in predicted natural fre-

quency is thus calculated as 100�(fanalytical � fFE)=fFE, and
the results for all modes are shown in Fig. 8. For each mode

number n of an (m, n) mode the m values are connected by

lines so that one can see how the error changes for different

mode numbers m. It is observed that the deviations for all

the modes shown are within �1% and þ4% for curvature

radii down to 0.6 m, and that the deviations become larger

for the last model with smaller radius. Note that the funda-

mental mode (1, 1) is not included in this figure, since it is

inaccurately predicted as mentioned in Sec. IV A. As an

example, Fig. 9 shows the modal pattern of mode (2, 2)

which is obtained from an FE simulation of the panel with

Rx ¼ 0.2 m. It is obvious that the modal pattern is not sinu-

soidal but compressed by the two stiffeners close to the

edges in the strongly curved direction. The developed

method assumes that the mode shape is sinusoidal and there-

fore gives a large deviation for this mode as shown in Fig. 8.

It indicates that the smearing technique for curved plate can-

not be used for predicting accurate results for strongly

curved plates. It can also be seen that the stiffeners are

twisted by the base plate. Such local twisting cannot be pre-

dicted by the smearing theory since the stiffeners are

smeared. All in all it may be summarized that for the current

series of simulations, the natural frequencies are well pre-

dicted with the smearing technique even for panels of a rela-

tively small radius of say 0.6 m.

V. CONCLUSIONS

A simple smearing method has been presented for calcu-

lating the natural frequencies, mode shapes, and forced vibra-

tions of simply supported doubly curved and cross-stiffened

thin rectangular shells. This developed smearing technique

has been validated by experiments with a weakly doubly

FIG. 7. (Color online) Geometries

of four panel models. The upper

models from left to right have a cur-

vature radius Rx of 2.0, 1.0, and 0.6

m, respectively, while the lower

model has a radius of Rx ¼ 0.2 m.

FIG. 8. Deviations of predicted natural frequencies for panels with different

curvatures of radii of Rx. Natural frequencies obtained with the smearing

technique (fanalytical) are compared with calculated results from the FE analy-

sis (fFE), which is considered as the reference. The deviation is calculated as

100�(fanalytical � fFE)=fFE. The left-hand figure shows results for modes (2, 1)

and (3, 1), while the right-hand figure is for modes (1, 2), (2, 2), and (3, 2).

FIG. 9. Two-dimensional mode shape of mode (2, 2) obtained by the FE

analysis for the panel with a curvature radius of Rx ¼ 0.2 m and Ry¼ 1.5 m.
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curved and cross-stiffened panel fabricated from a block of

PVC-material. Comparison of the predicted and experimental

results revealed a good agreement for the modal properties as

well as for the forced panel responses. Simulation studies

were also carried out for more curved panels by using the

smearing technique and detailed FE analyses. For the cases

examined herein, the results show that a reasonably good en-

gineering accuracy can be obtained with limited computa-

tional effort for such doubly curved panels with moderate

size cross-stiffeners.

This investigation also demonstrates that it is difficult to

predict the fundamental panel mode (1, 1) of highly curved

panels accurately when using the Donell–Mushtari–Vlasor’s

shell equations. However, it is expected that it should be pos-

sible to improve the developed estimation method to a wider

range of structures by adding a correction factor to these

shell equations, as mentioned in Ref. 34.

APPENDIX: A BRIEF DESCRIPTION OF THE
SMEARING TECHNIQUE FOR CROSS-STIFFENED
THIN RECTANGULAR PLATE2,3

The bending stiffness Dy can be calculated as the prod-

uct of Young’s modulus of the material, E, and the area

moment of inertia in the y direction, Iy, which is

Iy ¼ Ip þ Isy þ Isx; (A1)

where the area moment of inertia of the plate with respect to

the neutral axis of the system is

Ip ¼
h3

12ð1� v2Þ
þ dy �

h

2

� �2

� h; (A2)

in which v is the Poisson’s ratio, and dy denotes the distance

between the plate’s bottom surface and the neutral axis of the

stiffened plate in the y direction. The area moment of inertia

of the stiffeners with respect to the same neutral axis is

Isy ¼
1

as
�

wsy � h
3
sy

12
þ hsy þ h� dy �

hsy

2

� �2

� ðwsy � hsyÞ

" #

;

(A3)

and, in the x direction,

Isx ¼
h3ey

12
þ hey

hey

2
þ h� dy

� �2

: (A4)

The neutral axis dyis

dy ¼
N

D
; (A5)

with the numerator

N ¼
1

2
h2asbs þ aswsxhsx hþ

hey

2

� �

þ bswsyhsy hþ
hsy

2

� �

� wsxwsyMinfhsx; hsyg hþ
Minfhsx; hsyg

2

� �

and the denominator

D ¼ hasbs þ aswsxhsx þ bswsyhsy � wsxwsyMinfhsx; hsyg;

in which hey is the thickness of the added upper layer on

the plate resulting from the smeared x stiffener. Note that the

other geometrical parameters are defined in Fig. 1 in the

main body of the paper.

The bending stiffness in the x direction, Dx, is obtained

in a similar manner.
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