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Plates stiffened with ribs can be modeled as equivalent homogeneous isotropic or orthotropic
plates. Modeling such an equivalent smeared plate numerically, say, with the finite element method
requires far less computer resources than modeling the complete stiffened plate. This may be im-
portant when a number of stiffened plates are combined in a complicated assembly composed of
many plate panels. However, whereas the equivalent smeared plate technique is well established
and recently improved for flat panels, there is no similar established technique for doubly curved
stiffened shells. In this paper the improved smeared plate technique is combined with the equation
of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing
technique for stiffened shell structures. The developed prediction technique is validated by compar-
ing natural frequencies and mode shapes as well as forced responses from simulations based on the
smeared theory with results from experiments with a doubly curved cross-stiffened shell. Moreover,
natural frequencies of cross-stiffened panels determined by finite element simulations that include
the exact cross-sectional geometries of panels with cross-stiffeners are compared with predictions

based on the smeared theory for a range of different panel curvatures. Good agreement is found.
© 2011 Acoustical Society of America. [DOI: 10.1121/1.3523305]
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. INTRODUCTION

Stiffeners are efficient for enhancing the stiffness of a
plate or shell structure without adding unnecessary amounts
of mass as a simple increase of plate thickness would do.
However, the increased complexity of plates with added
stiffeners normally requires much longer computing time for
finding the structural acoustic properties of a stiffened struc-
ture in a design process. To reduce the computational effort,
a coarse but efficient method is to smear the stiffeners to the
base plate or shell. This technique of smeared stiffened
plates with an effective torsional rigidity was developed by
Lampert in the 1970s' and summarized by Szilard in 2004.
The accuracy of this technique for flat plates has recently
been improved.3 However, there is no similar established
theory for doubly curved stiffened shells, and this is the sub-
ject of the present paper.

In the last 40 years researchers have paid a great deal of
attention to the dynamic behavior of stiffened shells. Works
have been done on cylindrical shells*?’ and on conical
shells.*>>! Since doubly curved shells need more degrees of
freedom for analysis researchers mostly use the finite ele-
ment method (FEM) to deal with such cases. The application
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of FEM to the vibration analysis of a stiffened shell makes it
possible to model discrete stiffeners, variable curvature, and
irregular geometry. However, FEM calculations based on
the detailed geometries of such panels have been found to be
very time-consuming.

Nowadays, engineers usually draw a new design struc-
ture with a three-dimensional program and later simulate its
dynamic properties with an FEM program. The drawing pro-
cess and the FEM calculations may take days or even weeks
for a relatively simple structure. Furthermore, it is often nec-
essary to make modifications to the structure and for that
new FEM calculations are required. All this can be very
time-consuming. Even though computers become more and
more powerful, the engineer’s working hours for making a
drawing and developing an FEM model have almost not
changed. Thus, it is very useful if the geometry can be sim-
plified, for example, by the smearing technique.

The purpose of this paper is to present a smearing tech-
nique for determining the natural frequencies and mode
shapes of a simply supported doubly curved thin rectangular
shell with periodically arranged small stiffeners. The smear-
ing technique becomes unreliable at high frequencies, where
half of the bending wavelength in the base plate becomes
comparable to—or smaller than—the stiffener spacing. How-
ever, the proposed technique is useful for making a fast esti-
mate, although its application is limited to the lower number
of vibrational modes.

The expressions to be derived in the following for stiff-
ened shells are based fundamentally on smeared properties of
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equivalent flat plates with stiffeners. Such properties of
flat stiffened plates are therefore summarized in Sec. II.
These results are then utilized, in Sec. III, for developing the
smearing technique for curved cross-stiffened panels. In
Sec. IV predictions using the developed smearing technique
are validated experimentally for a weakly doubly curved
and cross-stiffened panel. It is demonstrated that good agree-
ment is achieved between predicted and measured values
of natural frequencies and mode shapes as well as forced
responses in terms of point and transfer mobilities. With the
smearing technique experimentally validated for the test
panel, this technique is then used for predicting the modal
properties of cross-stiffened panels for a range of different
curvatures. These predicted results are compared with
finite element (FE) calculations (using ANsys) in which all
stiffener details are modeled; these time-extensive FE calcu-
lations are used as reference for evaluating the predicted
results.

Il. SMEARED STIFFENED PLATE

It has long been recognized that the lower modes of
vibration of stiffened plates may be estimated by “smearing”
the mass and stiffening effects of the stiffeners over the sur-
face of the plate. The results in this section are based on
existing theory.”>

In the following, the natural frequencies of a thin rectan-
gular plate with cross-stiffeners are determined. The plate is
simply supported along all four edges. The geometrical pa-
rameters of the plate are shown in Fig. 1; the length of the
plate is a in the x direction and b in the y direction, and its

thickness is /. The stiffeners in the x direction have the width
Wiy, height hg,, and spacing b, and in the y direction the cor-
responding values are wy,, Ay, and a;.

The governing equation of motion for an equivalent
smeared plate of the stiffened plate has been derived
by Szilard;*> for the transverse displacement w(x,y,?) this
yields

Iw(x,y, 1) Fw(x,y, 1) Fw(x,y, 1)
D, 2H D
v T aeae T T gy
Pw(x,y,1)
pn CNN0
+p By p, (1)

where D, and D, are the equivalent bending stiffness per unit
width in the x and y directions, H is the effective torsional
rigidity, p is the mass density of the material, 4, is the thick-
ness of the equivalent smeared plate, and p is the external
forcing. The development of the improved D, and D, can be
found in Ref. 3, but for ease of reference some details are
also given in the Appendix. With the stiffeners smeared and
spread on top of the plate, the thickness of the equivalent
smeared plate becomes
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For a thin cross-stiffened rectangular plate with all
edges simply supported, the natural frequencies of the corre-
sponding smeared plate are’>

1 1 mm\ 4 mn\ 2 /nm\ 2
S flastife :E ?\/ D, (7) + 2H <7> (7) + Dy(

where p” = ph, is the smeared average mass per unit area,
and the integers m and n are the mode numbers correspond-
ing to the x and y directions.

FIG. 1. Geometrical parameters of a cross-stiffened flat rectangular plate.
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lll. SMEARED STIFFENED SHELL

In this section, an equation for the natural frequencies of a
simply supported doubly curved and cross-stiffened rectangu-
lar shell is presented together with an expression for the forced
response. First, the unstiffened rectangular shell is considered.

A. Natural frequencies of a doubly curved thin
rectangular shell

Soedel studied a simply supported doubly curved rectan-
gular shell.>® Here, the shell has a constant radius of curva-
ture R, in the x direction, and a constant radius of curvature
Ry in the y direction. The x—y coordinate system is selected
on the imagined flat base plate. The curved edge lengths of
the shell are a in the x—z plane, and b in the y—z plane, and the
thickness of the shell is 4. In what follows E is the Young’s
modulus, v is the Poisson’s ratio, and p is the density.

Assumptions such as Donell-Mushtari—Vlasor’s simpli-
fication and the infinitesimal distance assumption are used in

Luan et al.: Doubly curved stiffened thin rectangular shells



Soedel’s derivation. The first basic assumption of Donell—-
Mushtari—Vlasor’s simplification is that contributions of
in-plane deflections can be neglected in the bending strain
expressions but not in the membrane strain expressions. The
second assumption is that the influence of inertia in the in-
plane direction can be neglected. Third, the infinitesimal dis-
tance assumption is

(ds)® = (dx)* + (dy)?, @)

where ds is the magnitude of the differential change.** Both
assumptions introduce a considerable error in the estimation
of the fundamental natural frequency.''

With these assumptions, the equation of motion for free
transverse vibration w(x, y,7) = U 3eiw’ of a homogenous shell
becomes™

DV®U; + EhV{U; — p"0*V*Us = 0, 5)
where

V() = 8;52 . 832)()2) 7 )

vy =+ 20, 120 @®)

R, Ox2 R, 0y

in which p” = ph is the mass per unit area, and D is the
bending stiffness. For the doubly curved, simply supported

rectangular shell, the transverse displacement is expressed
by a double sine series with terms of the form

Us o = Ay sin 2 sin 22 )
’ a b

Substituting Eq. (9) into Eq. (5) gives
D (mn)2+<nn)2 4—|—Eh 1 (mn)2+ 1
a b R. \ a R
2 2
p”aﬂ{(m”) +(%) } —0. (10)
a b
The natural frequencies are therefore
) 1 mm\2  mm\2]°D
mene =32 | (2) () | 77
1 /mm2 1 m\2]?
LY 2 (D)
R\ a Ry \'b E
=[]
a b

It is well known that the natural frequencies of a thin rectan-
gular flat plate are

(11
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where the geometrical and material parameters of the flat

plate are the same as those of the curved shell except for the
curvatures. Therefore, Eq. (11) can be rewritten,

1 mm2 1 nm\2]?
e () ()]
{Rx a Ry \'b E
=T
a b

All in all, the formula for the natural frequencies of a
simply supported, doubly curved, thin rectangular shell can
be seen to be the sum of two terms. The first term relates to a
flat plate that has the same geometrical and material parame-
ters as the curved shell except for the curvatures; the second
term is accounting for the curvature. In other words, in parts
a doubly curved rectangular shell has properties similar to a
flat rectangular plate for which the shell is pressed and
extended into a flat surface. The thickness does not change
during this process. The edge lengths of the flat plate are
equal to the curved edge lengths of the shell, which are still a
and b. Thus, the natural frequencies of the doubly curved

shell can be obtained by finding the natural frequencies of the
related flat plate and adding the curvature term; see Eq. (13).

13)

f2 _ 2
mn,curve — J mn flat

B. Natural frequencies of a simply supported, doubly
curved, and cross-stiffened thin rectangular shell

This section presents the natural frequencies of a simply
supported, doubly curved, and cross-stiffened thin rectangu-
lar shell. Both a physical explanation and an analytical deri-
vation are offered.

Equation (13) indicates a possible way of finding the natu-
ral frequencies even for a doubly curved cross-stiffened shell. If
these stiffeners are smeared on the surface of the shell, the
resulting structure can be regarded as an equivalent smeared
shell. The smeared shell also has its related plate, which is the
shell pressed and extended into a flat surface. The related
smeared plate has its equivalent bending stiffness in the x and y
direction, D, and Dy, torsional rigidity, H, and equivalent thick-
ness, h,. None of these parameters appears in the curvature term
in Eq. (13), which means that this term is independent of the
smearing technique. The two terms in Eq. (13) can thus be
obtained individually. Equation (3) yields the natural frequen-
cies of the related plate, whereas the curvature term of Eq. (13)
can be obtained from the base shell properties. Following these
arguments this results in the natural frequencies of a simply sup-
ported, doubly curved, and cross-stiffened thin rectangular shell

Vs =
mn,curve,stiff — J mn flat,stiff

AGRAGHN
() ()]
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An analytical derivation of Eq. (14) can be developed
by using the equation of motion for the shell. Equation (5)
can represent an equation of motion for a stiffened shell, pro-
vided that the parameters D, &, and p” = ph are replaced by
the corresponding properties of an equivalent smeared shell,
that is, by D,, h,, and p” = ph,. The equation of motion of
the equivalent smeared shell therefore becomes

D,V¥U; + Eh,V Uz — p"0*V*U; = 0, (15)
As can be seen from Eq. (6), the bending stiffness D of a
shell is independent of the curvature. Therefore D can be
obtained from a structure where the radii of the shell go to
infinity, in other words, a corresponding flat plate. Similarly,
the equivalent bending stiffness D, can also be calculated for
an equivalent smeared flat plate, which is the smeared shell
pressed and extended into a flat surface.

It was shown in Sec. II that the equivalent smeared plate
has its equivalent bending stiffnesses D, and D, and tor-
sional rigidity H. In order to use Eq. (15), D,, Dy, and H
should be combined into one parameter, D,. The challenge
now is to find an expression for D,, which should include the
orthotropic behavior of the equivalent smeared plate.

It can be assumed that an equivalent “isotropic” plate,
which has the same geometrical properties of the previous
equivalent smeared plate, exists. Also, the “isotropic™ plate
has an equivalent bending stiffness, D,, and its mechanical
properties are the same as those of the mentioned equiva-
lent smeared plate. The equation of motion of an isotropic
plate is*

p(Pwley.t) dtwley.0)  Fwlxy. i)
Ox* Ox20y? oy*
Pw(x,y,1)
+PhT—P (16)

By replacing D with D, and & with h,, one can use Eq. (16)
as the equation of motion for the equivalent “isotropic”
plate. With the simply supported boundary condition, the
natural frequencies of this plate can now be obtained,

=5 (2) 4 (3)]

Since the “isotropic” plate has the same mechanical proper-
ties as the equivalent smeared plate, their natural frequencies

D,
phe

7)

fmn.iso

Substituting Eqs. (3) and (17) into Eq. (18) gives an expres-
sion for the bending stiffness of the assumed ‘“isotropic”
equivalent plate,

o) 2 () () o (5)
De — a a b b ) (19)
() +(5)
a b
This yields the wanted bending stiffness. Now, by substitut-
ing Eq. (19) into Eq. (15), one can obtain the natural

frequencies of the simply supported, doubly curved, and
cross-stiffened thin rectangular shell,

11
2
fmn,curve,stiff = mﬁ
4 2 4
o s (5 0 )
a b

GG
w2y

Note that the first term equals frﬁn’ﬂal’sﬁff in Eq. (3). It can
therefore be seen that Eq. (20) is identical with Eq. (14).

(20)

C. Forced vibration of a simply supported, doubly
curved, and cross-stiffened thin rectangular shell

The smearing technique can also be used for evaluation
of forced vibration of a simply supported, doubly curved,
and cross-stiffened thin rectangular shell. If a pressure
p = p(x,y) is applied on the panel in its normal direction, it
can be inserted in Eq. (15), and with Eq. (19) also substi-
tuted, the equation of motion becomes

D, NV*Us + Eh,V,Us — p"'0*V*Us = Vp, (21)
where the pressure can be expressed by a double sine series
with terms of the form

nmy

mmx
DPmn = Ppp SiIN——sin——.
a

b (22)

By substituting Eqgs. (9) and (22) into Eq. (21), the total displace-
ment at position (x, y) can be found after some algebra to be

S - nmy
should also be identical. They are = n sm — sm — 23
' 22 3 >
fmn,iso - f;nn,ﬂat,stiff . ( 1 8) where
) ”H
b
Amn =P mn (24)

D[ (2 + (52 ]+ g () e ()] - o[ (2 ()]
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For point force excitation of amplitude F at panel position
(x0, o) it follows that P,,,, = Fod(x — x¢) - 6(y — yo), where o
is the Dirac delta function. The transfer mobility Y(x,y;
Xo, Yo) that relates the transverse velocity response at location
(x, y) to a point force at (xo, yo) can therefore be determined
from

ioUs(x,y)

Y (x,y;x0,y0) = TR (25)

The point (or direct) mobility is obtained simply by replac-
ing the response location (x, y) by (xq, o) in Eq. (25).

IV. COMPARISON OF RESULTS
A. Experiments with a curved stiffened panel

A physical model has been used to test the equation
obtained by the presented smearing technique. The model is a
doubly curved cross-stiffened thin rectangular shell, which is
fabricated (milled out) from a solid block of polyvinyl chlo-
ride (PVC). The experimental arrangement is shown in Fig. 2,
where it is seen that the solid edge block of the machined
panel is screwed into a thick-walled hard-wood box, which is
bolted to a 300 kg steel stand. The simply supported boundary
condition of the panel was attempted accomplished by a
machined narrow groove around the panel perimeter, see
Fig. 2. This means that the panel was supported by a thin nar-
row strip that is connected to an almost rigid supporting edge.
The material properties are £ = 3 X 10° N/m?, v = 0.33, and
p = 1360 kg/m’. The dimensions of the shell are a = 344
mm, b = 258 mm, 7 = 6 mm, R, =2 m, and R, = 1.5 m. The
pattern of the cross-stiffening is chosen to be spatially peri-
odic, such that ¢, = 86 mm and b, = 86 mm. With half end-
spacing it follows that there are three stiffeners in the x
direction and four stiffeners in the y direction. Stiffeners in

FIG. 2. Experimental arrangement with a doubly curved cross-stiffened
panel. White dashed lines on the panel face show the positions of the hidden
stiffeners on the rear side.

J. Acoust. Soc. Am., Vol. 129, No. 2, February 2011

both the x and y directions had the same height, i, = h
= 10 mm, and same width, w,, = wy, = 6 mm.

The curved cross-stiffened panel was driven via a
stringer at a stiffener by an electrodynamic exciter of type
Briiel & Kjer (B&K, Narum, Denmark) 4810; the coordi-
nates of the drive point were (xq, yp) = (0.213, 0.076), where
the origin of the coordinate system is at the lower left-hand
corner of the curved panel in Fig. 2. The input force was
measured with a force transducer of type B&K 8200, and the
response velocities were measured with a laser vibrometer of
type Polytec (Waldbronn, Germany) PDV-100 at 192 points
evenly spread over the panel. The force and velocity signals
were fed to charge amplifiers of type B&K Nexus 2692, and
the frequency response functions between velocities and ex-
citation force were measured using a B&K “PULSE” Ana-
lyzer 3560 with a frequency resolution of 0.25 Hz.

The natural frequencies and mode shapes of the panel
were obtained from the measured mobilities. In Table I the
natural frequencies predicted by Eq. (20) are compared with
the experimentally measured data. The mode numbers are
defined as m in the x direction and # in the y direction. In the
table the deviation of natural frequency denotes the difference
between the predicted analytical natural frequency (fanaiytical)
and the experimental data (fg,). Thus, this deviation in per-
centage is calculated as 100" (fynaiytical — fex)/fiex Generally a
very good agreement is found with deviations within 4%,
except for the fundamental natural frequency; this was found
to deviate from the measured value by —7%, but this mode is
left out of the table. The reason for this difficulty in accurately
predicting the fundamental frequency is the assumptions used
in the equation of motion of the shell, Eq. (5); these assump-
tions introduce a considerable error in the estimation of the
fundamental natural frequency.>* Such deviation for the fun-
damental natural frequency can be up to —30% if the panel is
strongly curved as is the case for some of the simulated cases
that will be shown in Sec. IV B. With the chosen dimensions
of the stiffened panel the range of modes (m, n) is limited to
mode (3, 2) for the case considered, because the smearing
method is not expected to work well when the frequency
becomes so high that the spacing between the stiffeners is
comparable to—or larger than—half a flexural wavelength in
the base plate.

The mobilities of the panel are predicted from Eq. (25),
where the numerator is obtained as the product of i® and the
displacement Uj, which is given by Eq. (23). The damping
value used in the predictions is taken to be the average value

sy

TABLE I. Predicted and measured natural frequencies for the experimental
panel model. The deviation for each mode is calculated as the difference
between the analytical natural frequency (finaiytica) and the experimental
data (fg). Thus, the deviations are calculated as 100" (funaryticat — fix)/fex-

Experiment Analysis Deviation
m N frequency (Hz) frequency (Hz) (%)
2 1 327 329 0.6
1 2 453 471 4.0
2 2 573 574 0.2
3 3 611 612 0.2
3 2 800 810 1.3
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FIG. 3. Point mobility of the curved stiffened panel. Solid line, analytical
result; dashed line, experimental result.

of the measured damping loss factors of the panel modes,
0.035. Figure 3 shows a comparison of the analytical and the
measured point mobility. The solid curve is the predicted
result using the smearing technique, and the dashed curve is
the experimental result. Overall, a fairly good agreement can
be seen, and the small deviations in mobility magnitude and
phase reflect the deviations that were observed in the natural
frequencies; this is especially the case for the 4% shift in the
natural frequency of mode (1, 2) that results in about 5 dB
deviation in the “mass-slope-region” of the mobility magni-
tude. From Fig. 3, it can also be observed that the weakly
excited mode (3, 1) at 611 Hz is hardly visible in the meas-
ured result. This is because the drive point was relatively
close to a nodal line of this mode; however, from an analysis
of all measured data both its natural frequency and mode
shape could be determined. Moreover, comparisons of pre-
dicted and measured responses at other positions also show a
fairly good agreement with similar small deviations corre-
sponding to those in the point mobility. This is seen in
Fig. 4, which shows three examples of predicted and meas-
ured transfer mobilities for the response positions denoted as
points 1-3 in Fig. 2. These points are located, respectively,
in a plate field, on a stiffener, and at the crossing of two stiff-
eners; the location of stiffeners can be seen from the dashed
lines in Fig. 2 that indicate the positions of the (hidden) stiff-
eners on the rear side of the panel.

An example of an experimentally determined modal pat-
tern is shown in Fig. 5 in the form of a two-dimensional sur-
face plot. The result shown is for mode (2, 1) at 327 Hz, and
this clearly illustrates a modal pattern with two “half-sinus-
oidal” in the x direction and one half-sinusoidal in the y
direction. This and the other mode shapes have been
obtained from the real parts of the transfer mobilities meas-
ured at 192 positions, and the modal data have been normal-
ized by the maximum amplitude value.

Two-dimensional plots are not suitable for comparing
measured and predicted results. All the examined mode
shapes are therefore shown in Fig. 6 by their detailed modal
patterns in the x and y directions, respectively. The mode
shapes predicted by the smearing technique are plotted as

712 J. Acoust. Soc. Am., Vol. 129, No. 2, February 2011
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FIG. 4. Transfer mobility of the curved stiffened panel. Solid line, analyti-
cal result; dashed line, experimental result. The upper figure is the transfer
mobility at point 1 in a plate field (see Fig. 2); the middle figure is at point 2
on a stiffener; the lower figure is at point 3 at the crossing of two stiffeners.

solid lines, whereas the experimentally determined mode
shapes are presented as circles located at the actual measure-
ment points; the dashed line represents the corresponding
un-deformed panel surface-line. Overall the agreement is
seen to be good between the predicted and measured results.
A close inspection, however, reveals that there are small
deviations. First, it is observed from the x-wise modal pat-
tern of mode (2, 1) that there are small displacements at each
end of the panel, and that these are in anti-phase. Similar
observations can be made for modes (3, 1) and (3, 2). This is
apparently caused by small shear deformations (displace-
ments) at the experimental simple support, or by small
motion of the whole experimental arrangement. Additional
tests showed that the vibration level of the “rigid” frame
were lower than the panel vibration by more than 25 dB at
these modes. Thus, the edge-deviation is most likely caused
by shear deformation at the narrow-strip support, which can-
not fully accomplish an ideal simple line support. Second, it
is observed that the measured modal patterns are not exactly
sinusoidal as is the case for the predicted mode shapes; this
applies in particular to mode (2, 2), both in the x and y

Luan et al.: Doubly curved stiffened thin rectangular shells
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Normalized velocity

FIG. 5. Mode shape of mode (2, 1) obtained from experiment.

directions, and this causes the nodal lines to shift slightly
from the predicted center positions of the zero-crossings. A
possible explanation for this could be boundary vibration
(albeit lower by 30 dB for this mode) of the supporting
“rigid” frame and box structure or manufacturing inaccura-
cies in the curved stiffened panel; this was measured glob-
ally to be of the order of 1.5% for the thickness of the base
panel, and this may have a small influence on the modal
symmetry. The other modes, on the other hand, have mostly
a fine match with the predicted modal patterns.

To sum up, the practically useable frequency range of the
presented smearing technique is limited by the frequency at
which half a bending wavelength in the base plate becomes
comparable to—or smaller than—the stiffener spacing. This
has been validated by the experiments reported herein, which
have demonstrated that the prediction technique is reliable
with an acceptable accuracy up to this frequency; at higher
frequencies the technique may have a small influence on
accurately replicating the actual mode shapes with beginning
local deformation in base panel areas between adjacent stiff-
eners. However, this is outside the frequency range consid-
ered in this study. All in all, the prediction and the
experiments have been found to be in good agreement, despite

the minor experimental difficulties that give rise to small
unpredictable errors.

B. Radius study by numerical simulations

In Sec. IV A a weakly curved cross-stiffened panel was
considered with curvature radii of R, = 2 and R, = 1.5 m.
With the smearing technique experimentally validated for
the considered modal range this section examines a new se-
ries of panels that are basically similar to the experimental
structure but with different values of curvature radii R,. In
this simulation study the panel radius R, takes values of 2.0,
1.5, 1.0, 0.6, and 0.2 m, whereas the other geometrical pa-
rameters are unchanged. Figure 7 shows the geometry of
four of these models. In the lower part of the figure the panel
is shown rotated so it is easier to see the arrangement of the
stiffeners.

The natural frequencies of this series of curved cross-stift-
ened panels were computed analytically by the use of the
smearing technique and, as a reference, corresponding detailed
numerical FE analyses were carried out using the software
package ansys. The element size used in the FE computations
was set to be 10 mm, and the boundary conditions of the

— FIG. 6. Mode shape evaluation. The left-hand
figures show the mode shapes in the x direction,
while the right-hand figures are the mode
shapes in the y direction. The corresponding
mode numbers are shown to the left. Solid lines
represent the theoretically determined mode
shapes; the circles represent the experimentally
determined mode shapes; and the dashed lines
show the neutral positions of the curved base

——————— plate.
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models were again taken to be simply supported along the
four panel edges.

The natural frequencies predicted with the analytical
smearing technique (fynaiytica) are compared with the results
computed with the FE model (frg); the FE model contains all
details of the structure and it is therefore considered to be
the reference for evaluation of the prediction accuracy, as
mentioned above. The deviation in predicted natural fre-
quency is thus calculated as 100*(fynaiyticat — frE)/fre, and
the results for all modes are shown in Fig. 8. For each mode
number n of an (m, n) mode the m values are connected by
lines so that one can see how the error changes for different
mode numbers m. It is observed that the deviations for all
the modes shown are within —1% and +4% for curvature
radii down to 0.6 m, and that the deviations become larger
for the last model with smaller radius. Note that the funda-
mental mode (1, 1) is not included in this figure, since it is
inaccurately predicted as mentioned in Sec. IV A. As an
example, Fig. 9 shows the modal pattern of mode (2, 2)
which is obtained from an FE simulation of the panel with

n=1 n=2

Rx=2.0m
Rx=1.5m
Rx=1.0m
— — —Rx=0.6m
= = =Rx=0.2m
5t * Zero line 4

A

Dfsesessnssssscasnnsed

Deviation of natural frequency [%]
Deviation of natural frequency [%]
|
|
|
1

&

-5 L
1 2 3

Mode number (m)

Mode number (m)

FIG. 8. Deviations of predicted natural frequencies for panels with different
curvatures of radii of R,. Natural frequencies obtained with the smearing
technique (fynaiyiica) are compared with calculated results from the FE analy-
sis (frg), which is considered as the reference. The deviation is calculated as
100" (fanatytical — fre)/fre. The left-hand figure shows results for modes (2, 1)
and (3, 1), while the right-hand figure is for modes (1, 2), (2, 2), and (3, 2).
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FIG. 7. (Color online) Geometries
of four panel models. The upper
models from left to right have a cur-
vature radius R, of 2.0, 1.0, and 0.6
m, respectively, while the lower
model has a radius of R, = 0.2 m.

R, = 0.2 m. It is obvious that the modal pattern is not sinu-
soidal but compressed by the two stiffeners close to the
edges in the strongly curved direction. The developed
method assumes that the mode shape is sinusoidal and there-
fore gives a large deviation for this mode as shown in Fig. 8.
It indicates that the smearing technique for curved plate can-
not be used for predicting accurate results for strongly
curved plates. It can also be seen that the stiffeners are
twisted by the base plate. Such local twisting cannot be pre-
dicted by the smearing theory since the stiffeners are
smeared. All in all it may be summarized that for the current
series of simulations, the natural frequencies are well pre-
dicted with the smearing technique even for panels of a rela-
tively small radius of say 0.6 m.

V. CONCLUSIONS

A simple smearing method has been presented for calcu-
lating the natural frequencies, mode shapes, and forced vibra-
tions of simply supported doubly curved and cross-stiffened
thin rectangular shells. This developed smearing technique
has been validated by experiments with a weakly doubly

FIG. 9. Two-dimensional mode shape of mode (2, 2) obtained by the FE
analysis for the panel with a curvature radius of R, = 0.2 m and R,= 1.5 m.
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curved and cross-stiffened panel fabricated from a block of
PVC-material. Comparison of the predicted and experimental
results revealed a good agreement for the modal properties as
well as for the forced panel responses. Simulation studies
were also carried out for more curved panels by using the
smearing technique and detailed FE analyses. For the cases
examined herein, the results show that a reasonably good en-
gineering accuracy can be obtained with limited computa-
tional effort for such doubly curved panels with moderate
size cross-stiffeners.

This investigation also demonstrates that it is difficult to
predict the fundamental panel mode (1, 1) of highly curved
panels accurately when using the Donell-Mushtari—Vlasor’s
shell equations. However, it is expected that it should be pos-
sible to improve the developed estimation method to a wider
range of structures by adding a correction factor to these
shell equations, as mentioned in Ref. 34.

APPENDIX: A BRIEF DESCRIPTION OF THE
SMEARING TECHNIQUE FOR CROSS-STIFFENED
THIN RECTANGULAR PLATE?*®

The bending stiffness D, can be calculated as the prod-
uct of Young’s modulus of the material, £, and the area
moment of inertia in the y direction, /,, which is

Iy :Ip +1xy + Ly, (A1)
where the area moment of inertia of the plate with respect to
the neutral axis of the system is

n n\?
L,=— 4+ (dy—=) -h
r 12(1—v2)+() 2) ’

in which v is the Poisson’s ratio, and d, denotes the distance
between the plate’s bottom surface and the neutral axis of the
stiffened plate in the y direction. The area moment of inertia
of the stiffeners with respect to the same neutral axis is

(A2)

L (wy b hy\®
Iy = Ty+ <hsy+h—dy—7}) “(wy - hgy) |
(A3)
and, in the x direction,
h3 h 2
Io=24hy|=Z2+h—d, ) . A4
w=1yF y< 5+ }> (A4)
The neutral axis d,is
N
d, = — A5
y D ) ( )

with the numerator

1 h h
N = = hlab, + aswhg, (h + %) + bswsyhyy (h + ﬂ)

2 2
Min{ hyy, hsy}>

— WeWwsyMin{hgy, hgy} <h + >
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and the denominator
D = ha‘vbs + a‘vwsxhsx + bsws_vhsy - WSXWXyMin{hsxv hsy}7

in which h,, is the thickness of the added upper layer on
the plate resulting from the smeared x stiffener. Note that the
other geometrical parameters are defined in Fig. 1 in the
main body of the paper.

The bending stiffness in the x direction, D,, is obtained
in a similar manner.
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